“The Audibility Extender (AE) receives information on the user’s hearing loss to
decide which frequency region will be transposed. The frequency where transposition begins is called the start frequency. Typically, one octave of sounds above the start frequency will be transposed. This is called the source octave.
“The AE picks the frequency within the ‘source octave’ region with the highest intensity (for example, peak frequency), and locks it for transposition.
As the peak frequency changes, the transposed frequency also changes.”
For example, let’s say the peak intensity is 4,000 Hz. This frequency and the sounds surrounding it will be transposed linearly by one octave to 2,000 Hz. In addition, every frequency will be shifted down by 2,000 Hz. For example, 3,000 Hz will now be at 1,000 Hz and 4,500 Hz will be at 2,500 Hz.
“In this way,” says Francis Kuk, “the transposed signal is likely to be
placed in a region where the hearing is aidable. To limit the masking effect from the transposed signal and any potential artefacts, frequencies that are outside the one octave bandwidth of 2,000 Hz will be filtered out.”
“The level of the transposed signal will be automatically set by Audibility Extender so it is above the threshold of the wearer.”
Research reveals that
linear frequency transposition has the potential to help people with severe to profound hearing loss gain access to high frequency information in speech and environmental sounds. Research also suggests that these listeners learn to utilize the extra information when it is made available to them.
Find out more about Widex' latest advances in hearing technology in the
WIDEX MOMENT™ dispenser guide.
See also:Kuk F, Keenan D, Korhonen P, Lau C (2009). ’Efficacy of Linear, Efficacy of Linear Frequency Transposition on Consonant Identification in Quiet and Noise’, J American Academy of Audiology, 20(8)10